人工智能产业展望:2018年三大难题如何破解?
日期::2018-02-03 来源:人工智能 语音识别 语音交互

当前,AI的竞争已然升级到国家竞争。2017年首次出现了“AI中国威胁论”。谷歌前董事长施密特公开抱怨美国政府对企业在人工智能领域的支持不足,这将使美国“在10年内”向中国拱手让出在该领域的主导权。

抱怨的背后正体现出中国人工智能厚积薄发,取得了一定成就,尤其是在应用层的发展达到了与美国相近的水平。如在移动支付方面,目前中国的移动支付普及率为77%,位居全球第一,在大量应用的背后,从刷脸支付到算法优化,人工智能扮演着关键作用。美国人免不了喝上一壶老陈醋。

事实真的如此吗?

我们在做《中美两国人工智能产业发展全面解读》报告时发现:中国人工智能企业数量、人才数量都仅为美国的一半;美国布局全面,而中国无论是企业还是人才,在产业基础层、技术层、应用层,分布不均,仅应用层略有积累。

施密特之抱怨,终究无法掩盖中美两国巨大的产业落差。

与其关注谁威胁谁,不如把心思放在技术创新上。这才是每一个AI企业都应该时时刻刻思考的问题,也是一个科技企业的本分。

不过,现在产业界也不够冷静。甚至于出现了一些让人担忧的迹象。回顾2017,人工智能领域已经出现了三大突破,算法、政策、资金,均创里程碑,业界欢呼鼓舞,这种情形像极了1999年底网络泡沫泛滥的情形。

展望2018,偌大一个人工智能,优秀项目不够、顶尖人才不足、场景落地缺缺,三大难题横亘眼前,又将如何破解?

2017年的三大突破

1

算法的突破

要说在2017年把人工智能引入舆论高潮的,就不得不提围棋人机大战。来自谷歌旗下的AlphaGo以3:0击败了世界排名第一的柯洁,随后AlphaGo Zero又取得超过AlphaGo 的实力,赢得了100场比赛的全胜,并在40天内超过了所有旧版本。

AlphaGo的前几代版本,主要采用深度学习算法,一开始用上千盘人类棋谱进行训练。

AlphaGo Zero则跳过了这个步骤,自我对弈学习下棋,完全从乱下开始,采用的是强化学习。该系统从一个对围棋一无所知的神经网络开始,将该神经网络和一个强力搜索算法结合,自我对弈。在对弈过程中,神经网络不断调整、升级,预测每一步落子和最终的胜利者。

强化学习其实也是机器学习的一个分支,强化学习是一种标记延迟的监督学习。它讲究在一系列的情景之下,通过多步恰当的决策来达到一个目标,是一种序列多步决策的问题。

AlphaGo Zero的成果提示,AI并非只有深度学习,强化学习也很值得研究。

在过去的三十年,深度学习运动一度被认为是学术界的一个异类, Geoff Hinton和他同事的努力,使得深度学习成为主流,应用于语音识别、图像标签以及其他无数在线工具的用户体验。

有趣的是,临近年底,深度学习之父Hinton发布新论文Capsule,断然宣称要放弃反向传播和深度学习理论,欲自废三十年功力再练一套新AI“功夫”。圈里圈外顿时蒙圈。

自我颠覆或酝酿着AI的另一次飞跃。李飞飞对此大为赞赏,发推特称:没有工具是永恒的,即使是反向传播和深度学习。重要的是基础研究继续推进。

2

政策的突破

2017顶层设计已经明确昭示产业发展方向,可以预期,2018年后各地将掀起新一轮的发展高潮。

为抢抓人工智能发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国,2017年7月,国务院印发的《新一代人工智能发展规划》,提出三步走计划,到2030年人工智能理论、技术与应用总体达到世界领先水平。

《规划》旨在大力发展五大人工智能2.0技术(包括深度学习、跨界融合、人机协同、群智开放和自主操控),用以解决技术、产业、社会和国防四大领域的问题。值得一提的是,规划中还提到了让中小学开设人工智能和编程课程,人工智能教育从娃娃抓起,一时间风头无两,盖过规划。

继《规划》发布后,11月15日,科技部在北京召开新一代人工智能发展规划暨重大科技项目启动会,宣布依托百度、阿里、腾讯和科大讯飞四家公司,成立人工智能四大平台,标志着新一代人工智能发展规划和重大科技项目进入全面启动实施阶段。

作为创业者和企业家,2018年发展什么样的人工智能技术和产品、怎样发展人工智能技术和产品?翻开《规划》,尤其是关于“培育高端高效的智能经济”的内容,一定可以找到一些思路:“大力发展人工智能新兴产业,将技术转换成应用,实现在智能软硬件、智能机器人、智能运载工具(车、船、飞机、火箭等)、VR/AR、智能终端和物联网基础器件的创新;加快推进产业智能化升级,促进传统企业的改造,让制造、农业、物流、金融、商务和家居等各领域都实现人工智能规模化应用;大力发展智能企业,推动企业智能升级,推广应用智能工场;打造人工智能创新高地,鼓励打造建设以人才、企业、生产要素为中心的产业群、产业园。”

3

AI投融资突破

一改前两年的低调,2017年的资本,高调的聚集到屈指可数的较成规模的AI创业项目中。

7月11日,4.1亿美元!商汤科技刷新AI领域单轮融资纪录!

10月31日,4.6亿美元!旷视科技获4.6亿美元C轮融资,再次刷新了融资记录!

2017年,一系列眼花缭乱的融资事件陆续爆发。

2017年中国AI领域投融资创出历史新高,一年内总投融资达582亿元。

在投资热门领域方面,VC对计算机视觉与图像、自然语言处理和智能机器人的关注持续全年,其趋势基本符合腾讯研究院8月发布的《中美两国人工智能产业发展全面解读》和《中美人工智能创投趋势报告》的预测。

值得一提的是,国产AI芯片独角兽出现。长期以来,中国信息产业受制于人,在产业核心芯片方面的落后不仅仅是技术、资金的匮乏,更重要的还有产业生态意识的淡薄。AI芯片投资周期长,金额大,产出小的特点,使得很多投资商及企业对它望而却步。而此次一亿美元的融资,将用于发展国产AI芯片的产品化和市场化,有助于推动产业走向自主发展的道路。

粥多僧少,泡沫也在酝酿。由于创业公司成立数量较前两年有所回落,2017年资金明显偏向中后期、大多数是一些较为成熟的项目,金额相当巨大。

2018年,投资人会不会对AI初创项目表示更多热情?

许多AI初创项目,属于“三缺一”项目,缺少独创技术、缺少应用场景、缺少成熟度,只有一个概念,徘徊在实验室里,难以推开市场的大门,看起来有点悬。


转自:搜狐新闻


上一篇:暂无 下一篇:2018年人工智能将无处不在
关键词: 声纹识别 声纹鉴定 社矫认证 社保认证 远程认证 动态口令 声纹密码 语音识别
友情链接: 深圳和音达 语音实验室